Homework Set 8

(sect 4.4-4.7)

1. Find the vector \boldsymbol{x} determined by the coordinate vector $[\boldsymbol{x}]_{\mathcal{B}}=\left[\begin{array}{c}-4 \\ 8 \\ -7\end{array}\right]$ and the basis $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ -7 \\ 3\end{array}\right]\right\}$
2. Find the coordinate vector $[\boldsymbol{x}]_{\mathcal{B}}$ of $\boldsymbol{x}=\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right]$ relative to the basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]\right\}$
3. Find the change-of-coordinates matrix from $\mathcal{B}=\left\{\left[\begin{array}{c}3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -5\end{array}\right],\left[\begin{array}{c}8 \\ -2 \\ 7\end{array}\right]\right\}$ to the standard basis in \mathbb{R}^{3}.
4. The set $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}. Find the coordinate vector of $\boldsymbol{p}(t)=3+t-6 t^{2}$ relative to \mathcal{B}.
5. Use coordinate vectors to test the linear independence of the set of polynomials: $(1-t)^{3}$, $(2-3 t)^{2}, 3 t^{2}-4 t^{3}$. Explain your work and your conclusions.

For questions 6 through 8, (a) find a basis, and (b) state the dimension.
6. $\left\{\left[\begin{array}{c}4 s \\ -3 s \\ -t\end{array}\right]: s\right.$ and t in $\left.\mathbb{R}\right\}$
7. $\left\{\left[\begin{array}{c}3 a+6 b-c \\ 6 a-2 b-2 c \\ -9 a+5 b+3 c \\ -3 a+b+c\end{array}\right]: a, b, \& c\right.$ in $\left.\mathbb{R}\right\}$
8. $\{(a, b, c, d): a-3 b+c=0\}$
9. Determine the dimensions of $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 4 & 7 \\ 0 & 0 & 5\end{array}\right]$
10. The first four Laguerre polynomials are $1,1-t, 2-4 t+t^{2}$, and $6-18 t+9 t^{2}-t^{3}$. Show that these polynomials form a basis of \mathbb{P}_{3}.

For questions 11 and 12, assume the matrix A is row equivalent to B . Without calculations, list $\operatorname{rank}(A)$ and $\operatorname{dim}(\operatorname{Nul}(A))$. Then find bases for $\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Nul(A).~}$
11. $A=\left[\begin{array}{ccccc}1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0\end{array}\right], \quad B=\left[\begin{array}{ccccc}1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
12. $A=\left[\begin{array}{cccccc}1 & 1 & -3 & 7 & 9 & -9 \\ 1 & 2 & -4 & 10 & 13 & -12 \\ 1 & -1 & -1 & 1 & 1 & -3 \\ 1 & -3 & 1 & -5 & -7 & 3 \\ 1 & -2 & 0 & 0 & -5 & -4\end{array}\right], B=\left[\begin{array}{cccccc}1 & 1 & -3 & 7 & 9 & -9 \\ 0 & 1 & -1 & 3 & 4 & -3 \\ 0 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
13. If a 6×3 matrix A has rank 3 , find $\operatorname{dim}(N u l A)$, $\operatorname{dim}(\operatorname{Row} A)$, and $\operatorname{rank}\left(A^{T}\right)$.
14. Let $\mathcal{B}=\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}\right\}$ be bases for a vector space V, and suppose $\boldsymbol{b}_{1}=-\boldsymbol{c}_{1}+4 \boldsymbol{c}_{2}$ and $\boldsymbol{b}_{2}=5 \boldsymbol{c}_{1}-3 \boldsymbol{c}_{2}$.
a. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
b. Find $[x]_{\mathcal{C}}$ for $\boldsymbol{x}=5 \boldsymbol{b}_{1}+3 \boldsymbol{b}_{2}$
15. Let $\mathcal{B}=\left\{\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{2}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}\right\}$ be bases for \mathbb{R}^{2}. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}. where $b_{1}=\left[\begin{array}{c}-1 \\ 8\end{array}\right], b_{2}=\left[\begin{array}{c}1 \\ -5\end{array}\right]$ and $c_{1}=\left[\begin{array}{l}1 \\ 4\end{array}\right], c_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
16. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1-3 t^{2}, 2+t-\right.$ $\left.5 t^{2}, 1+2 t\right\}$ to the standard basis $\mathcal{C}=\left\{1, t, t^{2}\right\}$. Then write t^{2} as a linear combination fo the polynomials in \mathcal{B}.

